Dr. Sparks’ Research Group works to better illuminate road lines

Increasing the visibility of roadway markings is an important task for engineers. The most popular approach for making roadway striping more visible has been to add glass beads to the surface of the roadway paint in order to cause some of the light from headlights to retro-reflect back to the car. However, when paint with retroreflective beads is submerged with water the index of refraction of water prevents the light from retro-reflecting and the roadway markings become nearly impossible to observe. The easiest workaround for this problem is to add retroreflective tabs to roads, but in our snowy climate the snowplows would rip tabs off the road leaving Utah with no great solutions.

Phosphorescent roadway paint featuring high-performance Eu:SrAl2O4 phosphors with the patent-pending protective polymer coating innovation from the Sparks Research Group.

The Taylor Sparks Research Group has set out to develop a potential alternative solution based on “glow in the dark” luminescent phosphors. Glow in the dark roadways have been piloted before in the Netherlands and failed spectacularly after only a few weeks due to rainwater causing the rare-earth elements to leach out of the ceramic phosphor in the paint. The innovation was led by group member Jason Nance (M.S., ’19) who performed his Master’s degree in Materials Science and Engineering (MSE) while working as the state chemist for the Utah Department of Transportation (UDOT).

Nance and Dr. Taylor Sparks developed a custom polymer coating for the ceramic phosphors that prevents the rare-earth ion from leaching out when submerged in water for prolonged periods. A provisional patent has been filed and a full patent application is under review. Sparks and Nance hope to commercialize this paint through their startup, JCS Labs, and will be conducting feasibility tests on public roads with UDOT this summer.

Dr. Sparks and Nance were recently interviewed by Fox13 News in Salt Lake City about their research and development, watch the interview here.

Prof. Chandran Led Team Receives ARPA-E Ultimate Grant Award

A University of Utah team lead by Dr. Ravi Chandran, Professor of Materials Science and Engineering, which includes Dr. Taylor Sparks, Professor of Materials Science & Engineering, and Dr. Wenda Tan, Assistant Professor of Mechanical Engineering has been awarded $800,000 as the Phase-I finding form ARPA-E Ultimate program and involves the development of next generation high temperature alloys.

Current generation of high temperature alloys for aircraft jet turbines are dominated by nickel base alloys, but their capabilities are limited to about 1100C turbine operating temperature. Alloys for higher temperature, about 1300C, inevitably require new alloys based on refractory metals. The team will use physical metallurgy principles for alloy design, assisted by machine learning, CALPHAD phase diagram simulations, phase field modeling and rapid powder metallurgy processing of alloys to make new alloys and prototype samples to meet the ARPA-E specifications.

The newly funded research project begins May 2021.

Discover the materials of the future … in 30 seconds or less

Since the dawn of history, the materials available to man have defined the very substance of society. The Stone Age gave way to the Bronze Age and eventually to the Iron and Steel Ages. We now enter the Information Age where technologists must balance a dynamic harmony between traditional approaches and transformational new tools. In this fascinating talk, Dr. Taylor Sparks will explain how he is working to reduce the trial and error of new materials discovery.

Dr. Taylor Sparks is an Associate Professor of Materials Science and Engineering at the University of Utah. He is originally from Utah and an alumni of the department he now teaches in. He did his MS in Materials at UCSB and his PhD in Applied Physics at Harvard University and then did a postdoc in the Materials Research Laboratory at UCSB. He is currently the Director of the Materials Characterization Lab at the University of Utah and teaches classes on ceramics, materials science, characterization, and technology commercialization.

His current research centers on the discovery, synthesis, characterization, and properties of new materials for energy applications. He is a pioneer in the emerging field of materials informatics whereby big data, data mining, and machine learning are leveraged to solve challenges in materials science. When he’s not in the lab you can find him running his podcast “Materialism” or canyoneering with his 3 kids in southern Utah. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Learn more at https://www.ted.com/tedx

Liu, Sparks receive Quantum Computing Grant

The National Science Foundation has awarded $1,635,591 to scientists from the University of Utah and a collaborator from University of California, Los Angeles, to research one of the biggest hurdles to quantum computing—the quantum logic units, or “qubits,” that carry information. The award is one of 19 Quantum Idea Incubator grants totaling $32 million funded this year as part of the National Science Foundation’s (NSF) Quantum Leap, one of NSF’s “10 Big Ideas” that represent bold, long-term research ideas at the cutting-edge of science and engineering.

The U-led project, “Quantum Devices with Majorana Fermions in High-Quality Three-Dimensional Topological Insulator Heterostructures,” was funded through an initiative called the Quantum Idea Incubator for Transformational Advances in Quantum Systems (QII – TAQS). QII – TAQS supports interdisciplinary teams that will explore innovative, transformative ideas for quantum science and engineering.

READ THE REST OF THE ARTICLE HERE