Engineering Entrepreneurship Certificate Grads – College of Engineering

In 2017, leaders at the University of Utah College of Engineering and the David Eccles School of Business recognized a vital intersection between engineering and entrepreneurship – which launched the Engineering Entrepreneurship Certificate (EEC). The unique hybrid of business, entrepreneurship, innovation and law courses has proven to be in-demand across both undergraduate and graduate engineering students.

Fast forward to 2019, and the first student to complete the certificate requirements was Kyle Isaacson. Isaacson earned his Ph.D. in biomedical engineering. Isaacson knew he wanted to stand out, so he applied for the certificate program as soon as it was launched.

“Despite going for a Ph.D., I’ve always known that I was headed for an industry career and not an academic one. I figured this designation would set me apart,” he said.

READ MORE HERE

Professor Emeritus Donald J. Lyman Passes

Donald J. Lyman, professor emeritus of Materials Science and Engineering and Bioengineering at the University of Utah, passed away last month at the age of 94.

Dr. Lyman was well-known for innovative biomedical polymer science and analytical characterization, blood-contacting materials, and protein interfacial science. He began and was director of Utah’s Biomedical Engineering Center for Polymer Implants, with research focused on new polymer developments for medical applications, innovating polymer membranes, vascular implants, nerve implants, ostomy implants and sutures.

Dr. Donald J. Lyman—scientist, researcher, educator, mentor and visionary—passed away at home on November 8, 2020, a few days after his 94th birthday. Throughout his long and distinguished career in industry, research institutes and academia, his love of science was palpable and infectious, a love that was first sparked by The Microbe Hunters by Paul De Kruif he read as an adolescent. It introduced him to a world of inexhaustible discoveries, one that he would explore through chemistry.

Equipped with the Gilbert chemistry set his parents bought him as a boy, he built his first chemistry lab in the basement of his parents’ home. The beauty of the natural world awed him and never ceased to inspire his curiosity and passion for learning.

Gifted with imagination, a nimble mind open to new ideas, and the ability to reduce complex ideas to understandable nuggets, Dr. Lyman had a knack for reaching across to people of all ages and backgrounds, drawing them into his world of science. An international leader in the field of biomedical polymers, he advocated for an interdisciplinary and cooperative approach among researchers to successfully tackle the challenges posed by the complexities of repairing the human body. He cautioned that the sharp distinctions drawn between various specialties, while being useful human contraptions for organizing the world around them, disappeared in nature and carried the danger of contributing to myopia that hindered cooperation and innovation.

Dr. Lyman began his research career at the Pioneering Research Laboratory of E.I. DuPont de Nemours after receiving his Ph.D in organic chemistry from the University of Delaware in 1952. At DuPont, he focused on polymer synthesis and structure/property relationships under the direction of Dr. William Hale Charch. With the premature death of Dr. Charch in 1958, Dr. Lyman began looking beyond DuPont to expand into other areas of polymer research. Professor Herman Mark at the Polytechnic Institute of Brooklyn suggested that he contact Dr. Maurice Huggins who was looking for a synthetic polymer chemist. Dr. Huggins invited Dr. Lyman to join his team at the Stanford Research Institute. The move to SRI in 1961 was a pivotal turning point for Dr. Lyman.                 

Soon after arriving at SRI, Dr. Lyman attended a lecture at Stanford’s medical school by Dr. Belding Scribner describing the first 15 patients kept alive on chronic dialysis using an arteriovenous shunt he developed at the University of Washington. Until  then, fresh cuts in a patient’s arm were made to access the artery and vein each time the patient was dialyzed, which severely limited the number of procedures since the same access sites could not be reused in most cases. After the talk, Dr. Lyman approached Dr. Scribner with some ideas on developing membranes to remove toxins during dialysis. This led to Dr. Scribner funding Dr. Lyman’s first year of membrane research. Funding from the John Hartford Foundation and the National Institute of Arthritis and Metabolic Diseases soon followed.

Dr. Lyman also began working on the effects of polymer structure and surface properties on the coagulation of blood. This research to synthesize thromboresistent polymers was supported by the National Heart Institute. One of the polymers developed, a new copolyether urethane urea, was later used in fabricating the first generation of the Utah artificial heart designed by Dr. Clifford Kwan-Gett.

Because of his work at SRI, Dr. Lyman was elected in 1964 as a member of the American Society for Artificial Internal Organs. At the time, Dr. Lyman was among only a half dozen or so Ph.D.’s among a sea of M.D.’s. There he crossed paths with Dr. Willem Kolff who at the time was the Scientific Director of Artificial Organs at the Cleveland Clinic. In 1967 Dr. Kolff left for the University of Utah to direct the Division of Artificial Organs that was started by Dr. Keith Reemstma, Head of University of Utah’s Department of Surgery and Acting Dean of the College of Medicine.

On the recommendation of Dr. Kolff, Dr. Reemstma invited Dr. Lyman in early 1969 to join the University of Utah, offering him research and teaching appointments in both the College of Medicine and the College of Engineering. Attracted not only by the opportunity to work with Dr. Kolff  but equally by the atmosphere of excellence and cutting edge research that permeated the University under the leadership of President James Fletcher (who later headed NASA) and others such as Dr. Reemtsma and the renowned hematologist Dr. Maxwell Wintrobe, Dr. Lyman embarked on a 20-year stint at the University of Utah.

Dr. Lyman’s continued interest in the synthesis and characterization of polymers and the broader applications of polymers as implants led him to pursue his own research programs. From early in his research on biomaterials, one of Dr. Lyman’s long range goals was to develop polymer implants that would repair the injury in the acute phase but then function as scaffolding to promote healing to ultimately reduce or replace the body’s reliance on the implants. He obtained numerous grants from several agencies including the National Science Foundation, the National Heart Institute, and the National Institute of General Medical Science. The largest of these programs was the Biomedical Engineering Center for Polymer Implants funded by NIGMS in 1978 and directed by Dr. Lyman. An interdisciplinary team of leading researchers in different specialties was brought together to work on a variety of implant areas, including vascular graft, ureter, esophageal and nerve repair. The Center was the first of its kind in the United States.

In addition to his research, Dr. Lyman taught both undergraduate and graduate courses in biomaterials and chemistry throughout his tenure. His courses were popular among students but none more so than his polymer synthesis class, a hands-on graduate level lab course taught every summer quarter through the Chemistry department. Space was limited and there was always a waiting list of students wanting to enroll.

Dr. Lyman’s research attracted graduate students, post docs, fellows and visiting professors both domestically and internationally. As faculty advisor to over two dozen masters and doctoral students, Dr. Lyman was both demanding and approachable. He also trained surgical residents on research methods through the Surgery department. He enjoyed teaching, hoping to challenge students to think independently and question conventional wisdom. Generous with his time and sparing no effort to help his students achieve their goals, his students will remember getting back numerous red-lined drafts of their thesis and dissertation and the countless hours spent rehearsing their oral presentation in front of Dr. Lyman and their colleagues, all in an effort to prepare for the main event. It was particularly helpful to those for whom English was not their first language.

Dr. Lyman retired from the University of Utah in 1989. During his tenure, he held appointments in four academic departments—Materials Science and Engineering, Surgery, Bioengineering and Chemistry. The Department of Bioengineering was created in no small measure from the vision and efforts by him and Dr. Joseph Andrade to fill the need for an academic department focused on biomaterials. He was appointed as emeritus professor of both Materials Science and Engineering and Bioengineering in 1989.

Dr. Lyman’s research continued after leaving the University and moving to Washington state. From 1994 to 2003, he was the director of Polymer Chemistry at the Hope Heart Institute, a research institute in Seattle, Washington founded by the late Dr. Lester Sauvage, a world renowned heart surgeon. Dr. Lyman’s last research took him into an entirely new area of study—that of using Fourier transform infrared spectroscopy to study the molecular changes that breast cancer appeared to initiate in the morphology of hair. His foray into this research was accidental. He learned from his long time friend, the late Dr. Maxwell Feughelman (University of New South Wales, Australia), that a former graduate student of his (Dr. Veronica James) detected shifts in the pattern of hair structure in the presence of breast cancer using Synchrotron x‑ray diffraction. Though these pattern shifts were observable, x‑ray diffraction could not explain the molecular changes causing the shifts. Having used Fourier transform infrared spectroscopy extensively in his polymer research to study molecular structures, Dr. Lyman thought it might be able to shed light on what was happening at the molecular level to cause these pattern shifts. His last two papers reported his findings.

Dr. Lyman’s achievements are many. He authored and co-authored nearly 170 scientific papers and book chapters. He is the holder of several patents and the recipient of many awards and honors, including University of Utah’s Distinguished Research Award for 1982-1983, the Clemson Award for Basic Research (Society for Biomaterials) for 1982, visiting professorships and invited lectureships. He served on editorial boards, think tanks and steering committees. He was also a founding member of the Society for Biomaterials.

These achievements would not have been possible were it not for the many colleagues, students, staff and friends, too many to name, but the list would not be complete without mentioning Dr. Dominic Albo, professor of surgery with whom Dr. Lyman began working immediately upon arriving in Utah and whose friendship helped sustain Dr. Lyman during trying times.

SOURCE

Dr. Huiwen Ji joins the MSE Faculty in January 2021

The Materials Science & Engineering Department at the University of Utah is pleased to announce that Dr. Huiwen Ji will join the department as an assistant professor. She is a materials chemist working on establishing structure-property links in solid-state functional materials with an unconventional perspective. Though crystalline matters are often characterized by periodic order, of particular interest to her research is how correlated disorder and competing local forces give rise to unusual phenomena that are inaccessible to perfect crystals, yet are crucial for energy storage and many other applications. She approaches these scientific questions by coupling synthesis and property measurements with advanced total scattering and spectroscopic characterizations. Her ultimate goal is to design better materials through controlling disorder and even create flexible disorders that are adaptive to external stimuli.

Dr. Ji comes from Lawrence Berkeley National Laboratory where she was a research scientist in the Energy Storage & Distributed Resources Division. Her position was supported by the John S. Newman Fellowship funded by the Office of Energy Efficiency & Renewable Energy of DOE. She was a postdoctoral associate in the MSE Department at UC Berkeley during 2016–2019. She obtained her Ph.D. in chemistry from Princeton University in 2014.

Dr. Ji will begin her post in January 2021

Mental Health Counseling for Students – The College of Engineering

The threat of a deadly virus, virtual classes, isolation. In these trying times, it’s especially difficult to be a college student.

Which is why the University of Utah College of Engineering has employed an in-house mental health counselor to help you navigate through what is sure to be a challenging school year.

Jiabao Gao, LMHC, LPC, CMHC, (pictured, right) is a highly trained counselor and therapist who has worked at Tsinghua University in Beijing, the Philadelphia School of Psychoanalysis, Aspire Health Alliance, and the University of Pennsylvania. He has a Master of Arts in Psychology and a Master of Science in Counseling.

Gao now provides services including brief individual and couple counseling, support group/group therapy, drop-in consultation, workshop/outreach, and assistance with referrals. He can meet with students who are suffering from a variety of issues such as anxiety, depression, academic concerns, self-esteem, social anxiety, and loneliness.

READ MORE HERE

U Engineering to Work with Versatile Test Reactor

Engineers from the University of Utah’s Department of Materials Science and Engineering are working with a large team of researchers to prepare experiments for the U.S. Department of Energy’s upcoming Versatile Test Reactor to test various molten salt reactor technologies.

These experiments are part of just one research project that will take advantage of the VTR, which is designed to test fuels, materials and sensors for power reactors. While the VTR is going through a federal approval process and has not yet been built, projects such as the one the U’s MSE department is working on are already underway.

The Idaho National Laboratory has published a new story about what the U’s experiment will be about, which involves the MSE chair, Michael Simpson, and involves irradiating molten salt to see how it would change.

Click here to read the INL story.

MET-E Alum, Dr. Kumar, joins Univ. of New Mexico staff

Dr. Pankaj Kumar, 2016 PhD from metallurgical engineering, has joined the Mechanical Engineering Department, University of New Mexico, Albuquerque, NM, as a tenure-track Assistant Professor in July 2020. Pankaj obtained his MS in Materials Engineering from the Indian Institute of Science, Bangalore, India. With a dream to make a career into academia, he moved to the USA in 2013.

He graduated with PhD from Dr. Ravi Chandran’s group in 2016. He then joined Dr. Mano Misra’s group for his postdoctoral research. He explored the physical, mechanical, and electrochemical behavior of additive manufactured materials during his two years stint as a postdoc. He then became a Research Assistant Professor in Chemical and Materials Engineering at the University of Nevada, Reno, and continued exploring research in the Additive Manufacturing areas. He will be teaching classes in Mechanical Engineering and building his research group at University of New Mexico, staring in Fall 2020.

Dr. Bedrov and SMRC discover new liquid phase

Research activities in the MRSEC Soft Materials Research Center (SMRC) that includes molecular simulation group of Prof. Bedrov have discovered an elusive phase of matter, first proposed more than 100 years ago and sought after ever since. The “ferroelectric nematic” phase of liquid crystal has been described in recent study published in the Proceedings of the National Academy of Sciences (PNAS 2020 117, 14021-14031; https://doi.org/10.1073/pnas.2002290117). The discovery opens a door to a new universe of materials.

Nematic liquid crystals have been a hot topic in materials research since the 1970s. These materials exhibit a curious mix of fluid- and solid-like behaviors, which allow them to control light and have been extensively used in liquid crystal displays (LCDs) in many laptops, TVs and cellphones. The nematic liquid crystals like dropping a handful of pins on a table. The pins in this case are rod-shaped molecules that are “polar”—with heads that carry, say, a positive charge and tails that are negatively charged. In a traditional nematic liquid crystal, half of the pins point up and the other half point down, with the direction chosen at random. A ferroelectric nematic liquid crystal phase, however, patches or “domains” form in the sample in which the molecules all point in the same direction, either up or down, and therefore creating a material with polar ordering.

Debye and Born first suggested in the 1910s that, if you designed a liquid crystal correctly, its molecules could spontaneously fall into a polar ordered state. In the decades since, however, scientists struggled to find a liquid crystal phase that behaved in the same way. That is, until MRSEC researchers began examining RM734, an organic molecule created by a group of British scientists several years ago. That same British group, plus a second team of Slovenian scientists, reported that RM734 exhibited a conventional nematic liquid crystal phase at higher temperatures. At lower temperatures, another unusual phase appeared. When the MRSEC team tried to observe that strange phase under the microscope they noticed something new. Under a weak electric field, this phase of RM734 was 100 to 1,000 times more responsive to electric fields than the usual nematic liquid crystals and the molecules are nearly all pointing in the same direction.

However, experimentally it is hard to zoom down to molecular scale and understand why and how these RM734 molecules were achieving such collective behavior. This is where atomistic molecular dynamics simulations conducted by Dengpan Dong and Xiaoyu Wei from Prof. Bedrov group allowed to gain atomic scale understanding. First, the simulations were able to confirm that aligning all RM734 molecules in the same direction is energetically more favorable than to have conventional random alignment of molecular dipoles. Second, detail analysis of structural and orientational correlations obtained from simulations identified key groups and intermolecular interactions that stabilize the ferroelectric nematic phase. Using these tools Bedrov’s group currently explores other chemical structures that can lead to a similar behavior.

Discovery of this new liquid crystal material starts a new chapter in condensed-matter physics and could open up a wealth of technological innovations—from new types of display screens to reimagined computer memory. Within couple days of publication, the manuscript got a world-wide attention and was picked up by more than 25 news outlets around the world.

GERALD STRINGFELLOW’S BRIGHT IDEA

The National Academy of Inventors has released a new video about the legacy of Gerald Stringfellow, University of Utah Distinguished Professor of both electrical and computer engineering and materials science and engineering.

The new video, “From Campus to Commerce,” profiles Stringfellow’s contributions to the development of light-emitting diodes, a technology that would benefit everything that uses LEDs from traffic lights to computer monitors.

Stringfellow developed a process called organometallic vapor-phase epitaxy for the growth of new semiconductor alloys in which aluminum, gallium, indium and phosphorous are deposited on a substrate to create red, orange, yellow and green LED crystals. This led to better handheld calculators that used red LEDs for the display. Stringfellow took his research to the University of Utah where he was hired as a professor in 1980. He made major conceptual advances in the field and would later publish a book on the process that has now become the bible for the science of growing LED crystals.

READ MORE HERE

Two MSE Students Receive Prestigious NSF Graduate Fellowships

Ashlea Patterson (MSE, B.S. ’19) and Dani Beatty (MSE, B.S./M.S. ’20) received NSF GRFP fellowships to assist in their continued graduate study in materials science.

The Department of Materials Science & Engineering is proud to announce that MSE graduates Danielle Beatty (MSE, B.S./M.S., ’20) and Ashlea Patterson (MSE, B.S., ’19) both received fellowships from the National Science Fund’s (NSF) Graduate Research Fellowship Program (GRFP) to assist their continuance of graduate study and research in the field of materials science. With these fellowships Beatty will pursue her Ph.D. at the University of Colorado in Boulder and Patterson at the University of California at Santa Barbara (UCSB).

The NSF GRFP is the country’s oldest fellowship program that directly supports graduate students in various STEM (Science, Technology, Engineering and Mathematics) fields. Since 1952, NSF has funded over 50,000 Graduate Research Fellowships out of more than 500,000 applicants.  Currently, 42 Fellows have gone on to become Nobel laureates, and more than 450 have become members of the National Academy of Sciences.  In addition, the Graduate Research Fellowship Program has a high rate of doctorate degree completion, with more than 70 percent of students completing their doctorates within 11 years.

 

 

Two MSE Students Receive Prestigious DOE Graduate Fellowships

The Department of Materials Science & Engineering is proud to announce that two of its graduate students, Jarom Chamberlain and Matt Newton, have been selected by the U.S. Department of Energy (DOE) to receive prestigious three year Nuclear Energy University Program (NEUP) fellowships in the amount of $161,000 each. Both students are in Prof. Michael Simpson’s group, working towards graduate degrees in metallurgical engineering. They both earned B.S. degrees in metallurgical engineering from the University of Utah.

Only 34 NEUP graduate fellowships were awarded this year for the entire country, so it is a remarkable testament of the quality of our students, department, and research that two awards were made to students at the University of Utah. Jarom and Matt will continue their work studying molten salt based processes in support of advanced nuclear energy in Prof. Simpson’s lab.

Since 2009, DOE has awarded close to 800 scholarships and fellowships totaling approximately $44 million to students pursuing nuclear energy-related degrees. Ninety-three percent of students who have completed nuclear energy-related fellowships have either continued to advance their education in nuclear energy or have obtained careers at DOE’s national laboratories, other government agencies, academic institutions, or private companies. Nine former fellowship winners are now university professors engaged in nuclear energy-related research, and one was competitively awarded an Office of Nuclear Energy research and development award in FY 2019.

Find additional information about DOE’s nuclear energy scholarships and fellowships awarded at: https://neup.inl.gov/SitePages/FY19_SF_Recipients.aspx