Tiwari Named NAI Senior Member

Congratulations to University of Utah materials science and engineering professor Ashutosh Tiwari, who was elected a National Academy of Inventors (NAI) Senior Member for 2021. He is one of 63 luminaries from 36 institutions named to this year’s class and the only one from Utah.

“It is a great honor to be elected to the National Academy of Inventors as a Senior Member. Though this recognition has been granted to me, it was not possible without the creativity and high-quality research performed by my numerous students and postdocs over the last one and half decades,” said Tiwari. “I am also thankful to the College of Engineering and the University of Utah’s PIVOT Center for providing a conducive environment for high-quality research and innovation.”

READ MORE

GERALD STRINGFELLOW’S BRIGHT IDEA

The National Academy of Inventors has released a new video about the legacy of Gerald Stringfellow, University of Utah Distinguished Professor of both electrical and computer engineering and materials science and engineering.

The new video, “From Campus to Commerce,” profiles Stringfellow’s contributions to the development of light-emitting diodes, a technology that would benefit everything that uses LEDs from traffic lights to computer monitors.

Stringfellow developed a process called organometallic vapor-phase epitaxy for the growth of new semiconductor alloys in which aluminum, gallium, indium and phosphorous are deposited on a substrate to create red, orange, yellow and green LED crystals. This led to better handheld calculators that used red LEDs for the display. Stringfellow took his research to the University of Utah where he was hired as a professor in 1980. He made major conceptual advances in the field and would later publish a book on the process that has now become the bible for the science of growing LED crystals.

READ MORE HERE

Liu, Sparks receive Quantum Computing Grant

The National Science Foundation has awarded $1,635,591 to scientists from the University of Utah and a collaborator from University of California, Los Angeles, to research one of the biggest hurdles to quantum computing—the quantum logic units, or “qubits,” that carry information. The award is one of 19 Quantum Idea Incubator grants totaling $32 million funded this year as part of the National Science Foundation’s (NSF) Quantum Leap, one of NSF’s “10 Big Ideas” that represent bold, long-term research ideas at the cutting-edge of science and engineering.

The U-led project, “Quantum Devices with Majorana Fermions in High-Quality Three-Dimensional Topological Insulator Heterostructures,” was funded through an initiative called the Quantum Idea Incubator for Transformational Advances in Quantum Systems (QII – TAQS). QII – TAQS supports interdisciplinary teams that will explore innovative, transformative ideas for quantum science and engineering.

READ THE REST OF THE ARTICLE HERE