Lundgren and Stephanz Named MSE Outstanding Seniors

FT. DOUGLAS OFFICER’S CLUB, SALT LAKE CITY — On the evening of Thursday, April 7th, 2016, the Materials Science & Engineering Department assembled for the 16th annual MSE Senior Banquet & Poster Presentations at the Ft. Douglas Officer’s Club on the campus of the University of Utah in Salt Lake City.

The poster presentation portion of the evening is the fulfillment of the 18 graduating senior’s requirements for MSE 5098/5099. Over the past year students were broken up into eight groups and worked with faculty advisors to formulate their senior research and design projects. They reported their research and findings during the evenings festivities. 

The top three poster presentations were recoginized by the departments — first place was won by Jason Dalton and Garrett Meeks; second place was Carl Luft, Kyle Campbell and Zixiao Liu; and, third place was Brandon Day and Kristina Lundgren (see bar on left for project title information). All senior posters will be on display in the MSE Department for the following year. 

The program spent the evening honoring both Kristina Lundgren (BS ’16) and Megan Stephanz (BS/MS ’17) as the Outstanding Graduating Seniors of 2016. Typically the department honors one graduating senior, but the caliber of graduating seniors made it difficult to chose just one student to honor.

The 2017 Materials Science & Engineering Senior Banquet & Poster Presentation is slated for Friday, April 7, 2017, location TBA.

Dr. Zang Group helps sniff out a dangerous vapor

Alkane fuel is a key ingredient in combustible material such as gasoline, airplane fuel, oil — even a homemade bomb. Yet it’s difficult to detect and there are no portable scanners available that can sniff out the odorless and colorless vapor.

But University of Utah engineers have developed a new type of fiber material for a handheld scanner that can detect small traces of alkane fuel vapor, a valuable advancement that could be an early-warning signal for leaks in an oil pipeline, an airliner, or for locating a terrorist’s explosive.

Their discovery was published online Friday, March 25, in the American Chemical Society’s journal, ACS Sensors. The team is led by University of Utah materials science and engineering professor Ling Zang, who also is a faculty member with the Utah Science, Technology and Research (USTAR) economic development initiative.

Currently, there are no small, portable chemical sensors to detect alkane fuel vapor because it is not chemically reactive. The conventional way to detect it is with a large oven-sized instrument in a lab.

“It’s not mobile and very heavy,” Zang says of the larger instrument. “There’s no way it can be used in the field. Imagine trying to detect the leak from a gas valve or on the pipelines. You ought to have something portable.”

So Zang’s team developed a type of fiber composite that involves two nanofibers transferring electrons from one to the other.

“These are two materials that interact well together by having electrons transferring from one to another,” says Ben Bunes, a postdoctoral fellow in the University of Utah’s materials science and engineering department. “When an alkane is present, it sticks in between the two materials, blocking the electron transfer between the two nanofibers.”

That kind of interaction would then signal the detector that the alkane vapor is present.

Read the full press release at the U News Center.

Copeland wins GELS award

SALT LAKE CITY — Materials Science & Engineering student, Jeffrey Copeland (B.S., ’17) was awarded a Governor’s Energy Leadership Scholars (GELS) award from the state of Utah. Copeland is a student in the Professor Taylor Sparks research group. 

Copeland will use his award to work along with group members — Max Gallant, Carina Hahn and Nic Flinner who founded Electrochrome LLC., to develop inexpensive films that can be applied to windows (see left bar for more information). 

One potential application for this technology are “smart windows” in residential and commercial buildings that can be programmed to reflect more sunlight to keep the interior cooler during hot times of the day. 

This is the third student that Dr. Sparks advises who has recieved this award. Leila Ghadbiega (Ph.D. candidate) and Matthew Judge (B.S., ’16) were receipents of the award for the 2014-15 academic year.

Congratulations Jeffrey and the Prof. Sparks research group!

Engineering Material Magic

University of Utah engineers have discovered a new kind of 2D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.

The semiconductor, made of the elements tin and oxygen, or tin monoxide (SnO), is a layer of 2D material only one atom thick, allowing electrical charges to move through it much faster than conventional 3D materials such as silicon. This material could be used in transistors, the lifeblood of all electronic devices such as computer processors and graphics processors in desktop computers and mobile devices. The material was discovered by a team led by University of Utah materials science and engineering associate professor Ashutosh Tiwari. A paper describing the research was published online Monday, Feb. 15, in the journal, Advanced Electronic Materials. The paper, which also will be the cover story on the printed version of the journal, was co-authored by University of Utah materials science and engineering doctoral students K. J. Saji and Kun Tian, and Michael Snure of the Wright-Patterson Air Force Research Lab near Dayton, Ohio.

Transistors and other components used in electronic devices are currently made of 3D materials such as silicon and consist of multiple layers on a glass substrate. But the downside to 3D materials is that electrons bounce around inside the layers in all directions.

The benefit of 2D materials, which is an exciting new research field that has opened up only about five years ago, is that the material is made of one layer the thickness of just one or two atoms. Consequently, the electrons “can only move in one layer so it’s much faster,” says Tiwari.

While researchers in this field have recently discovered new types of 2D material such as graphene, molybdenun disulfide and borophene, they have been materials that only allow the movement of N-type, or negative, electrons. In order to create an electronic device, however, you need semiconductor material that allows the movement of both negative electrons and positive charges known as “holes.” The tin monoxide material discovered by Tiwari and his team is the first stable P-type 2D semiconductor material ever in existence.

“Now we have everything — we have P-type 2D semiconductors and N-type 2D semiconductors,” he says. “Now things will move forward much more quickly.”

Read the full press release at the U News Center.