Funding for Critical Materials Consortia

Crabtree’s announcement through the DOE’s Office of Fossil Energy and Carbon Management (FECM) recently detailed that $45 million has been awarded in federal funding for six projects to create regional consortia to accelerate the development of critical mineral and materials (CMM) supply chains including novel non-fuel carbon-based products from secondary and unconventional feedstocks.

Realizing the value of secondary and unconventional feedstocks, such as coal and coal by-products, effluent waters from oil and gas development, and acid mine drainage will enable the U.S. to rebuild domestic supply chains for CMM. By focusing on abundant American secondary and unconventional sources, these investments will support dependable and enduring supplies for American manufacturing and production of technologies essential to clean energy and the nation’s defense.

“DOE is investing in collaborative regional projects to help us realize our nation’s full potential for recovery of these vital resources,” continues Crabtree, “while creating high-wage jobs and delivering environmental benefits for communities across the United States.”

The six selected projects will build upon the work of DOE’s Carbon Ore, Rare Earth and Critical Minerals (CORE-CM) Initiative, expanding the focus from the basin scale to cover eight regions across the nation. Teams consist of partners such as private industry; universities; local, state, and federal government; local communities; and Tribes and Tribal organizations who will develop and implement strategies that enable each U.S. region to realize its economic critical minerals and materials potential, including valuable non-fuel carbon-based products. Principal investigator Michael Free of the U’s Department of Materials Science and Engineering will head up this important work in the Rocky Mountains known as Region 6.

Read more HERE.

Purity at a Premium in Critical Metals

U Researchers Secure Major Funding to Advance Critical Metals Production

Think about the device you’re reading this on. Whether it’s a smartphone, tablet, or laptop, it contains dozens of rare earth elements and critical metals that make its operation possible. Yet the United States currently relies on foreign sources for approximately 90% of some of these essential materials, creating vulnerabilities in our supply chain for everything from consumer electronics to clean energy technology.

The University of Utah is taking bold steps to address this challenge. Mike Free and Prashant Sarswat, metallurgical engineers from the Department of Materials Science and Engineering,have secured two significant funding awards to advance innovative technologies for rare earth elements (REE) and critical metals (CM) processing.

The Defense Advanced Research Projects Agency (DARPA) has awarded $220,446 for developing refined REE and CM products at 90% purity. Additionally, the Department of Energy (DOE) has committed $5 million to support a comprehensive project focused on upgrading mineral resources and optimizing extraction and separation processes to achieve an exceptional 99% purity level for some individual REE and CM products.

“We’re starting with unconventional resources to build a larger supply chain here in the US,” explains Free, principal investigator on the projects and department chair. “We are exploring new approaches that are more environmentally friendly. Some of the technologies we’re developing, like our magnetic separation process, use no additional chemicals, which are very different from conventional processing that can require hundreds of steps and  typically involves substantial amounts of acid.”

The research team, which includes graduate students Easton Sadler and Benjamin Schroeder, is developing innovative separation techniques, including a unique device that uses strong magnets to separate rare earth elements based on their magnetic properties. They are also exploring new environmentally friendly extraction methods using specialized materials that can selectively absorb specific elements.

READ MORE HERE

New Substrate Material for Flexible Electronics Could Help Combat E-Waste

Electronic waste, or e-waste, is a rapidly growing global problem, and it’s expected to worsen with the production of new kinds of flexible electronics for robotics, wearable devices, health monitors, and other new applications, including single-use devices.

A new kind of flexible substrate material developed at MIT, the University of Utah, and Meta has the potential to enable not only the recycling of materials and components at the end of a device’s useful life, but also the scalable manufacture of more complex multilayered circuits than existing substrates provide.

[READ MORE]

Prof. Chandran has been recently awarded new Phase II ARPA-E

Prof. Chandran has been recently awarded new Phase II funding (~$3M) for his ARPA-E project on the design and development of high temperature niobium alloys for gas turbines and other structural applications. The Phase II funding will make the cumulative ARPA-E funding, since 2021, as about $4.5M. Dr. Chandran’s proposal was one of the four selected and funded after the Phase II competition nationwide. Significant accomplishments of Chandran’s group in Phase-I practical alloy development, as well as plans for commercialization by a leading commercial producer, have been the major factors for the Phase II award. The research will support several graduate students in Dr. Chandran’s group. The ARPA-E funding also supports the acquisition of advanced mechanical testing equipment and a high temperature vacuum heat-treating furnace, with a cost of about $0.5M, in support of the advanced physical metallurgy research in the department.